Finsler geometries on strictly accretive matrices
نویسندگان
چکیده
In this work, we study the set of strictly accretive matrices, that is, matrices with positive definite Hermitian part, and show can be interpreted as a smooth manifold. Using recently proposed symmetric polar decomposition for sectorial manifold is diffeomorphic to direct product (Hermitian) unitary matrices. Utilizing decomposition, introduce family Finsler metrics on characterize their geodesics geodesic distances. Finally, apply distance matrix approximation problem also give some comments relation between introduced geometry geometric mean defined by Drury [1 S. Principal powers real part. Linear Multilinear Algebra. 2015;63(2):296–301.[Taylor & Francis Online], [Web Science ®] , [Google Scholar]].
منابع مشابه
Billiards in Finsler and Minkowski geometries
We begin the study of billiard dynamics in Finsler geometry. We deduce the Finsler billiard reflection law from the “least action principle”, and extend the basic properties of Riemannian and Euclidean billiards to the Finsler and Minkowski settings, respectively. We prove that the Finsler billiard map is a symplectomorphism, and compute the mean free path of the Finsler billiard ball. For the ...
متن کاملGeometries on σ-Hermitian matrices
Ring geometry and the geometry of matrices meet naturally at the ring R := Kn×n of n× n matrices with entries in a (not necessarily commutative) field K. Our aim is to strengthen the interaction between these disciplines. Below we sketch some results from either side, even though not in their most general form, but in a way which is tailored for our needs. Let us start with ring geometry, where...
متن کاملNon-additive Lie centralizer of infinite strictly upper triangular matrices
Let $mathcal{F}$ be an field of zero characteristic and $N_{infty}(mathcal{F})$ be the algebra of infinite strictly upper triangular matrices with entries in $mathcal{F}$, and $f:N_{infty}(mathcal{F})rightarrow N_{infty}(mathcal{F})$ be a non-additive Lie centralizer of $N_{infty }(mathcal{F})$; that is, a map satisfying that $f([X,Y])=[f(X),Y]$ for all $X,Yin N_{infty}(mathcal{F})...
متن کاملA Class of Anisotropic (finsler-) Space-time Geometries
A particular Finsler-metric proposed in [1,2] and describing a geometry with a preferred null direction is characterized here as belonging to a subclass contained in a larger class of Finsler-metrics with one or more preferred directions (null, spaceor timelike). The metrics are classified according to their group of isometries. These turn out to be isomorphic to subgroups of the Poincaré (Lore...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Linear & Multilinear Algebra
سال: 2021
ISSN: ['0308-1087', '1026-7573', '1563-5139']
DOI: https://doi.org/10.1080/03081087.2021.1968781